基于Pspice的放大器環路的穩定性分析
圖6:CF最優化噪聲增益曲線。本文引用地址:http://www.104case.com/article/193680.htm
大部分Pspice仿真器都允許使用圖6所示的“.STEP PARAM”語句來進行多級仿真并顯示迭加的結果。其它仿真器可能有專用命令來實現此類同步仿真功能。最優CF值在噪聲增益函數與LMH6629的開環增益曲線相交頻率處給噪聲增益函數設置了一個極點。由圖6可知,在本例中,CF=0.25pF。
大于0.25pF的更高CF值將會帶來帶寬損失,相應地,若CF低于0.25pF,相位裕度又將不足。如果CF足夠高(本例中是7pF),噪聲增益曲線有可能在低于20dB處與開環曲線相交。20dB是LMH6629的最小穩定增益。這種情況下電路可能將不再穩定或者放大器可能出現過高頻率響應峰值。因此必須有一個穩定范圍和最優值。
圖7所示的是當CF=0.25pF時,頻率函數LG的結果曲線。在沒有CF的情況下,相位裕度從原來的0o增加到61o。

圖7:開環曲線繪制驗證CF令相位裕度得以改善。
找到最優CF值后,可以重新查看初始的閉環配置(沒有大電感和電容加入到LG和NG的研究中),在使用最優CF值(此時是0.25pF)的情況下可以得到階躍響應。圖8顯示了面向不同CF的響應曲線,證實了CF值不論是偏大或是偏小,都會造成系統的不穩定,或是振鈴時間和穩定時間的延長;而最優CF值可以在最小振鈴下實現非常好的階躍響應。顯然,無論CF取值0pF還是7pF,電路都非常地不穩定。這表明7pF時的振蕩頻率遠高于0pF時的振蕩頻率,并不是因為噪聲增益與放大器開環增益曲線的交接頻率較高(如圖6所預測的那樣)。

圖8:不同CF對應的閉環階躍響應。
實際考慮和實驗結果比較
利用基于Pspice的分析方法來研究合適的補償值,并通過仿真找到最佳響應時的參數值后,接下來就是在實驗臺上驗證仿真結果。圖9為一個實驗臺的驗證設置示意圖。

圖9:TIA補償實驗臺驗證設置。
以下是圖9實驗臺設置的一些要點。
低電容值和實驗臺優化:為降低有效電容值,可以將RA、RB串在一起并與CF鄰接,這樣可以用一個市場上容易找到的電容(>1pF)來獲取皮法以下的電容值,而該值很難直接獲得。只要RB RF,該電路即可將CF的等效電容值降低1+ RB/RA倍。該方法可以得到一個0.20pF的等效電容,選用這樣的設置是因為0.25pF的仿真值會產生過阻尼實驗臺響應。物理電路板會存在一定的寄生電感和電容,它們可以被最小化,但是不能完全降低到0。因此,人們希望通過實驗臺測試來促進對仿真結果的優化,特別是在處理皮法級以下的標稱值時。等效電容為0.20pF時,檢測到的帶寬為70MHz;而當等效電容為0.25pF時,帶寬下降至55MHz。
等效光電二極管實驗臺設置:為便于測試,所示的(Rin, Cin以及CD)前端配置允許使用標準的50?實驗室設備來模擬光電二極管的性能。這里CD(假設為光電二極管電容)被設定為10pF。

評論