選擇高壓場效應管實現節能
Tj=Ta+Pd?RΦJA (1) 本文引用地址:http://www.104case.com/article/188015.htm
其中包括三個因素:周圍環境溫度Ta,功率耗散Pd與結至環境(junction-to-ambient)熱阻。Pd包括器件的導通損耗與切換損耗。這可由式2計算:
Pd=D.RDS(on).ID2+fsw.(Eon+Eoff) (2)
第一項明確表示了導通損耗,其中D是占空比,ID是漏極電流,RDS(on)是漏極至源級電阻,它也是電流與溫度的函數。應該查閱數據手冊得到本應用運行環境下的結溫度與漏極電流條件的具體值。
通常難以得到D、ID與RDS(on)的具體數值,所以工程師們傾向于選擇合理值的上界值。也許有人認為只需要考慮一個參數RDS(on),但是為了得到更低的RDS(on),通常需要更大的片基,這會影響切換損耗和體二極管的恢復。
切換損耗
功率損耗公式的第二部分與切換損耗有關。這種表示形式更常見于絕緣柵門極晶體管(IGBT),但fsw.(Eon+Eoff)更好地描述了功率損耗。在不同電流下,可能沒有導通損耗或導通損耗非常低。
這些損耗受到切換速度與恢復二極管的影響。在平面型MOSFET器件中,通過提高壽命時間控制體二極管的性能比在電荷平衡型器件中更為容易。因此,如果你的應用需要MOSFET中的體二極管導通,例如,電機驅動的不間斷電源(UPS)或一些鎮流器應用,改進的體二極管特性能比最低的導通電阻更有作用。
用這些損失乘以切換頻率(fsw)。關鍵是設計合適的柵極驅動電流,而輸入電容是該設計中的重要因素。
熱阻
計算最大結溫度的另一關鍵是結至環境熱阻RΦJA,它由式(3)計算。
RΦJA=RΦJC+RΦCS+RΦSA (3)
RΦJC是結至管殼(junction-to-case)的熱阻,與片基尺寸有關。RΦCS是管殼至匯點(case-to-sink)熱阻,與熱界面及電隔離有關,是用戶參數。RΦSA匯點至環境熱阻,為基本的散熱與空氣流動。
評論