關于電力電子裝置諧波問題的綜述
4.2.1 主動型諧波抑制方案
主要是從變流裝置本身出發,通過變流裝置的結構設計和增加輔助控制策略來減少或消除諧波,目前采用的技術主要有一下幾個方面。
——多脈波變流技術大功率電力電子裝置常將原來6脈波的變流器設計成12脈波或24脈波變流器以減少交流側的諧波電流含量。理論上講,脈波越多,對諧波的抑制效果愈好,但是脈波數越多整流變壓器的結構越復雜,體積越大,變流器的控制和保護變得困難,成本增加。
——脈寬調制技術脈寬調制技術的基本思想是控制PWM輸出波形的各個轉換時刻,保證四分之一波形的對稱性。根據輸出波形的傅立葉級數展開式,使需要消除的諧波幅值為零、基波幅值為給定量,達到消除指定諧波和控制基波幅值的目的,目前采用的PWM技術有最優脈寬調制、改進正弦脈寬調制、Δ調制、跟蹤型PWM調制和自適應PWM控制等。
——多電平變流技術針對各種電力電子變流器(對于電壓型的變流器必須用聯接電感與交流電源相連),采用移相多重法、順序控制和非對稱控制多重化等方法,將方波電流或電壓疊加,使得變流器在網側產生的電流或電壓為接近正弦的階梯波,且與電源電壓保持一定的相位關系。
——功率因數預調整器在電力電子裝置中加入高功率因數預調整器,在預調整器的直流側通過DC/DC變換控制入端電流,保證電力電子裝置從電網中獲取的電流為正弦電流并與電網電壓同相。此方法控制簡單,可同時消除高次諧波和補償無功電流,使電力電子裝置輸入端的功率因數接近1。
主動型諧波抑制方案的主要問題在于成本高、效率低。同時,電力電子系統中很高的開關頻率使PWM載波信號產生高次諧波,還會導致高電平的傳導和輻射干擾。因此在設計主動型諧波抑制方案時,必須用EMI濾波器將高次諧波信號從系統中濾除,防止它們作為傳導干擾進入電網;還要利用屏蔽防止它們作為輻射干擾進入自由空間,對空間產生電磁污染。所以對于較大功率的電力電子裝置,一般除了采用主動型諧波抑制方法以外,還要輔以無源或有源濾波器加以抑制高次諧波。
4.2.2 被動型諧波抑制方案
——無源濾波器(PF)無源濾波器通常采用電力電容器、電抗器和電阻器按功能要求適當組合,在系統中為諧波提供并聯低阻通路,起到濾波作用。無源濾波器的優點是投資少、效率高、結構簡單、運行可靠及維護方便,因此無源濾波是目前廣泛采用的抑制諧波及進行無功補償的主要手段。無源濾波器的缺點在于其濾波特性是由系統和濾波器的阻抗比所決定,只能消除特定的幾次諧波,而對其它次諧波會產生放大作用,在特定情況下可能與系統發生諧振;諧波電流增大時濾波器負擔隨之加重,可能造成濾波器過載;有效材料消耗多,體積大。
——有源濾波器(APF)圖4為APF原理圖,APF通過檢測電路檢測出電網中的諧波電流,然后控制逆變電路產生相應的補償電流分量,并注入到電網中,以達到消諧的目的。APF濾波特性不受系統阻抗影響,可消除與系統阻抗發生諧振的危險。與無源濾波器相比,具有高度可控性和快速響應性,不僅能補償各次諧波,還可抑制電壓閃變、補償無功電流,性價比較為合理。另外,APF具有自適應功能,可自動跟蹤補償變化著的諧波。
圖4 APF原理圖
APF按與系統連接方式分類,可分為串聯型、并聯型、混合型和串-并聯型。
并聯型APF可等效為一受控電流源,主要適用于感性電流源負載的諧波補償。它能對諧波和無功電流進行動態補償,并且補償特性不受電網阻抗影響。目前這類APF技術已相當成熟,大多數工業運行的APF多屬此類濾波器。
串聯型APF可等效為一受控電壓源,主要用于消除帶電容濾波的二極管整流電路等電壓型諧波源負載對系統的影響,以及系統側電壓諧波與電壓波動對敏感負載的影響。由于此類APF中流過的電流為非線性負載電流,因此損耗較大;此外串聯APF的投切、故障后的退出等各種保護也較并聯APF復雜,所以目前單獨使用此類APF的案例較少,國內外的研究多集中在其與LC無源濾波器構成的混合型APF上[2]。
混合型APF就是將常規APF上承受的基波電壓移去,使有源裝置只承受諧波電壓,從而可顯著降低有源裝置的容量,達到降低成本、提高效率的目的。其中LC濾波器用來消除高次諧波,APF用來補償低次諧波分量。
串-并聯型APF又稱為電能質量調節器(UPQC)[3],它具有串、并聯APF的功能,可解決配電系統發生的絕大多數電能質量問題,性價比較高。雖然目前還處于試驗階段,但從長遠的角度看,它將是一種很有發展前途的有源濾波裝置。
有源濾波技術作為改善供電質量的一項關鍵技術,在日本、美國、德國等工業發達國家已得到了高度重視和日益廣泛的應用。但是有源濾波器還有一些需要進一步解決的問題,諸如提高補償容量、降低成本和損耗、進一步改善補償性能、提高裝置的可靠性等。同時APF的故障還容易引發系統故障,因此各國對此技術還保持著一定的謹慎態度[4]。
——有源電路調節器(APLC)圖5為有源線路調節器(APLC)的原理圖,其結構與APF相似,因此過去很多文獻上都將其等同于APF。其實,從原理上分析,與APF單節點諧波抑制相比較,APLC是向網絡中某個(幾個)優選節點注入補償電流,通過補償電流在網絡中一定范圍內的流動,實現該范圍內所有節點諧波電壓的綜合抑制。即通過單節點單裝置的裝設,達到多節點諧波電壓綜合治理的功能,APLC的出現,表明電力系統諧波治理正朝著動態、智能、經濟效益好的方向發展。
圖5 APLC原理圖
5 諧波綜合治理的展望
日益嚴重的諧波污染已引起各方面的高度重視。隨著對諧波產生的機理、諧波現象的進一步認識,將會找到更加有效的方法抑制和消除諧波,同時也有助于制定更加合理的諧波管理標準。加大對諧波研究的投入將會大大加快對諧波問題的解決,當然諧波問題的最終解決將取決于相關技術的發展,特別是電力電子技術的發展。隨著國民經濟、諧波抑制技術的進一步發展、法制的進一步完善和對高效利用能源要求的增強,諧波治理問題最終將會得到妥善的解決。
隨著電子計算機和電力半導體器件的發展,有源電力濾波器的性能會越來越好,價格會越來越低。而用于無源濾波的電容和電抗器的價格卻呈增長的趨勢。因此有源電力濾波器將是今后諧波抑制裝置的主要發展方向。另外,電力電子技術中的有源功率因數校正技術也是極具生命力的。
6 結語
諧波的綜合治理工作勢在必行。消除電力電子裝置諧波污染的工作,可稱之為電力電子技術應用的“綠色工程”。電力電子技術的發展必須和這個工程同步,這樣才能為高效、低污染地利用電能開辟重要途徑,促進我們國民經濟的發展和用電設備的革新。同時,電力電子技術的推廣和利用才能有更為廣闊的發展前景。
評論