精確計算電池剩余電量至關重要
兩種方法取長補短
TI在下一代電量監測算法開發中選取了電流法和電壓法各自的長處。該公司慎重考慮了這個看似理所當然,但迄今為止尚人涉足的方案:將電流法和電壓法相結合,根據不同情況使用表現最為突出的方法。因為開路電壓與SOC之間存在非常精確的相關性,所以在無負載和電源處于張弛狀態的情況下,這種方法可以實現精確的SOC估算。此外,該方法也使得有機會利用不工作期(任何靠電池供電的設備都會有不工作期)來尋找SOC確切的“起始位置”。由于設備接通時可以知道精確的SOC,所以該方法免除了在不工作期對自放電校正的需求。當設備進入工作狀態并且給電池施加負載時,則轉而使用電流積分法。該方法無需對負載下的壓降進行復雜且不精確的補償,因為庫侖計數(coulomb-counting)從運行初始就一直在跟蹤SOC的變化。
這種方法還可以用來對完全充電的電量進行更新嗎?答案是肯定的。依靠施加負載前SOC的百分比信息、施加負載后的SOC(兩者均在張弛狀態下通過電壓測量獲得),以及二者之間傳輸的電荷量,我們可以很輕松地確定在特定充電變化情況下對應于SOC改變的總電量。無論傳輸電量多大、起始條件如何(無需完全充電),這點都可以實現。這樣就無需在特殊條件下更新電量,從而避免了電流積分算法的又一弱點。
該方法不僅解決了SOC問題,從而完全避免了電池阻抗的影響,而且還被用來實現其他目的。通過該方法可以更新對應于“無負載”條件下的總電量,例如可以被提取的最大可能電量。由于IR 降低,非零負載下的電量也將降低,并且在有負載情況下達到端接電壓值的時間縮短。如果SOC和溫度的阻抗關系式已知,那么有可能根據簡單的建模來確定在觀察到的負載和溫度下何時能夠達到端接電壓。然而,正如前文所提到的,阻抗取決于電池,并且會隨著電池老化以及充放電次數的增加而快速提高,所以僅將其存儲在數據庫中并沒有多大用處。為了解決這個問題,TI設計了一種可以實現實時阻抗測量的IC,而實時測量則能夠保持數據庫的持續更新。這種就解決了電池間的阻抗差異以及電池老化問題(如圖3所示)。阻抗數據的實時更新使得在指定負載下,可以對電壓情況進行精確預測。
在大多數情況下,使用該方法可以將可用電量的估算誤差率降低到1%以下,而最為重要的是,在電池組的整個使用壽命內都可以達到高精度。
即插即用是自適應算法帶來的另一大優點,該算法的實施不再需要提供描述阻抗與SOC 以及溫度之間關系的數據庫,因為這一數據將通過實時測量獲得。用于自放電校正的數據庫也不再需要,不過仍需要定義了開路電壓與SOC(包括溫度)關系的數據庫。但是,這方面的關系由正負極系統的化學性質決定,而不由具體的電池型號設計因素(如電解液、分離器、活性材料厚度以及添加劑)決定。由于多數電池廠商使用相同的活性材料(LiCoO2 以及石墨),因此他們的V(SOC,T)關系式基本相同。實驗結果支持上述結論。圖4 顯示了不同廠商生產的電池在無負載狀態下的電壓比較。
可以看出它們的電壓值很接近,偏差不過5mV,由此可知在最差情況下SOC的誤差也不過1.5%。如果開發一種新電池,僅需要建立一個新的數據庫,而不像現在需要數百個用于不同電池型號的數據庫。這樣就簡化了電量監測計解決方案在各種終端設備中的實施過程,且數據庫并不依賴于所使用的電池。即使采用不同類型或不同廠商生產的電池,也沒有必要重新編程。這樣,在實現電池監控IC即插即用的同時,精確度及可靠性也相應提高。
評論