電源設計指南:拓撲結構(二)
所謂多重化技術就是每相由幾個低壓PWM功率單元串聯組成,各功率單元由一個多繞組的隔離變壓器供電,用高速微處理器實現控制和以光導纖維隔離驅動。多重化技術從根本上解決了一般6脈沖和12脈沖變頻器所產生的諧波問題,可實現完美無諧波變頻。圖2為6kV變頻器的主電路拓撲圖,每組由5個額定電壓為690V的功率單元串聯,因此相電壓為690V×5=3450V,所對應的線電壓為6000V。每個功率單元由輸入隔離變壓器的15個二次繞組分別供電,15個二次繞組分成5組,每組之間存在一個12°的相位差。圖3中以中間△接法為參考(0°),上下方各有兩套分別超前(+12°、+24°)和滯后(-12°、-24°)的4組繞組。所需相差角度可通過變壓器的不同聯接組別來實現。
圖3中的每個功率單元都是由低壓絕緣柵雙極型晶體管(IGBT)構成的三相輸入,單相輸出的低壓PWM電壓型逆變器。功率單元電路見圖4。每個功率單元輸出電壓為1、0、-1三種狀態電平,每相5個單元疊加,就可產生11種不同的電平等級,分別為±5、±4、±3、±2、±1和0。圖5為一相合成的正波輸出電壓波形。用這種多重化技術構成的高壓變頻器,也稱為單元串聯多電平PWM電壓型變頻器,采用功率單元串聯,而不是用傳統的器件串聯來實現高壓輸出,所以不存在器件均壓的問題。每個功率單元承受全部的輸出電流,但僅承受1/5的輸出相電壓和1/15的輸出功率。變頻器由于采用多重化PWM技術,由5對依次相移12°的三角載波對基波電壓進行調制。對A相基波調制所得的5個信號,分別控制A1~A5五個功率單元,經疊加可得圖5所示的具有11級階梯電平的相電壓波形,線電壓波型具有21階梯電平,它相當于30脈波變頻,理論上19次以下的諧波都可以抵消,總的電壓和電流失真率可分別低于1.2%和0.8%,堪稱完美無諧波變頻器。它的輸入功

圖4功率單元電路

圖5五功率單元串聯輸出電壓波形

圖6ACS1000變頻器主電路拓撲結構圖
率因數可達0.95以上,不必設置輸入濾波器和功率因數補償裝置。變頻器同一相的功率單元輸出相同的基波電壓,串聯各單元之間的載波錯開一定的相位,每個功率單元的IGBT開關頻率若為600Hz,則當5個功率單元串聯時,等效的輸出相電壓開關頻率為6kHz。功率單元采用低的開關頻率可以降低開關損耗,而高的等效輸出開關頻率和多電平可以大大改善輸出波形。波形的改善除減小輸出諧波外,還可以降低噪聲、dv/dt值和電機的轉矩脈動。所以這種變頻器對電機無特殊要求,可用于普遍籠型電機,且不必降額使用,對輸出電纜長度也無特殊限制。由于功率單元有足夠的濾波電容,變頻器可承受-30%電源電壓下降和5個周期的電源喪失。這種主電路拓撲結構雖然使器件數量增加,但由于IGBT驅動功率很低,且不必采用均壓電路、吸收電路和輸出濾波器,可使變頻器的效率高達96%以上。
單元串聯多重化變頻器的優點是:
1)由于采用功率單元串聯,可采用技術成熟,價格低廉的低壓IGBT組成逆變單元,通過串聯單元的個數適應不同的輸出電壓要求;
2)完美的輸入輸出波形,使其能適應任何場合及電機使用;
3)由于多功率單元具有相同的結構及參數,便于將功率單元做成模塊化,實現冗余設計,即使在個別單元故障時也可通過單元旁路功能將該單元短路,系統仍能正常或降額運行。
其缺點是:
1)使用的功率單元及功率器件數量太多,6kV系統要使用150只功率器件(90只二極管,60只IGBT),裝置的體積太大,重量大,安裝位置成問題;
2)無法實現能量回饋及四象限運行,且無法實現制動;
3)當電網電壓和電機電壓不同時無法實現旁路切換控制。
用功率單元串聯構成高壓變頻器的另一種改進方案是采用高壓IGBT器件,以減少串聯的功率單元數。例如,用3300V耐壓的IGBT器件,用兩個功率單元串聯的變頻器可輸出4.16kV中壓;若要6kV輸出,只要三個單元串聯。功率單元和器件數量的減少,使損耗和故障也減少了,有利于提高裝置的效率和可靠性,縮小裝置體積。但由于電平級數的減少,輸出諧波增加,為獲得優良的輸出波形,必須加輸出濾波器。另外由于高壓IGBT比普通低壓IGBT要貴得多,所以雖然功率器件減少了,但成本不一定下降。
4中性點鉗位三電平PWM變頻器
在PWM電壓源型變頻器中,當輸出電壓較高時,為了避免器件串聯引起的靜態和動態均壓問題,同時降低輸出諧波及dv/dt的影響,逆變器部分可以采用中性點鉗位的三電平方式(Neutralpointclamped:NPC)。逆變器的功率器件可采用高壓IGBT或IGCT。ABB公司生產的ACS1000系列變頻器為采用新型功率器件——集成門極換流晶閘管(IGCT)的三電平變頻器,輸出電壓等級有2.2kV、3.3kV和4.16kV。圖6所示為ACS100012脈沖整流三電平電壓源變頻器的主電路拓撲結構圖。西門子公司采用高壓IGBT器件,生產了與此類似的變頻器SIMOVERTMV系列。
整流部分采用12脈波二極管整流器,逆變部分采用三電平PWM逆變器。由圖6可以看出,該系列變頻器采用傳統的電壓型變頻器結構,通過采用高耐壓的IGCT功率器件,使得器件總數減少為12個。隨著器件數量的減少,成本降低,電路結構簡潔,從而使體積縮小,可靠性更高。
由于變頻器的整流部分是非線性的,產生的高次諧波將對電網造成污染。為此,圖6所示的ACS1000系列變頻器的12脈波整流接線圖中,將兩組三相橋式整流電路用整流變壓器聯系起來,其初級繞組接成三角形,其次級繞組則一組接成三角形,另一組接成星形,整流變壓器兩個次級繞組的線電壓相同,但相位則相差30°角,這樣5次、7次諧波在變壓器的初級將會有180°的相移,因而能夠互相抵消,同樣的17、19次諧波也會互相抵消。這樣經過2個整流橋的串聯疊加后,即可得到12脈波的整流輸出波形,比6脈波更平滑,并且每個整流橋的二級管耐壓可降低一半。采用12相整流電路減少了特征諧波含量,由于

圖7三電平PWM變頻器輸出線電壓波形圖

圖8四電平逆變器結構圖
特征諧波次數N=KP±1(P為整流相數、K為自然數)。所以網側特征諧波只有11、13、23、25次等。如果采用24脈波整流電路,網側諧波將更進一步被抑制。兩種方案均可使輸入功率因數在全功率范圍內保證在0.95以上,不需要功率因數補償電容器。
變頻器的逆變部分采用傳統的三電平方式,所以輸出波形中會不可避免地產生比較大的諧波分量(THD達12.8%),這是三電平逆變方式所固有的,其線電壓波形見圖7。因此在變頻器的輸出側必須配置輸出LC濾波器才能用于普通的鼠籠型電機。經過LC濾波器后,可使其THD1%。同樣由于諧波的原因,電動機的功率因數和效率都會受到一定的影響,只有在額定工況點才能達到最佳的工作狀態,隨著轉速的下降,功率因數和效率都會相應降低。
三電平逆變器的結構簡單,體積小,成本低,使用功率器件數量最少(12只),避免了器件的串聯,提高了裝置的可靠性指標。根據目前IGCT及高壓IGBT的耐壓水平,三電平逆變器的最高輸出電壓等級為4.16kV,當輸出電壓要求6kV時,采用12個功率器件已不能滿足要求,必須采用器件串聯,除了增加成本外,必然會帶來均壓問題,失去了三電平結構的優勢,并且會大大影響系統的可靠性。若將來采用9kV耐壓的IGCT,則三電平變頻器可直接輸出6kV,但是諧波及dv/dt也相應增加,必須加強濾波功能以滿足THD指標。或者采用下面要講到的四電平逆變器。在9kV耐壓的器件出現之前,對于6kV高壓電機,可采用Y/△改接的辦法,將Y型接法的6kV電機改為△接法,線電壓為3.47kV,采用3.3kV或4.16kV輸出的變頻器即能滿足要求,同時也滿足了IGCT電壓型變頻器對電機的絕緣等級提高一級的要求,因此這個方案可能是最經濟合理的。但在進行Y/△改接后,電機電壓與電網電壓不一致,無法實現旁路功能,當變頻器出現故障時,又要保證生產的正常進行,必須首先將電機改回Y型接法,再投入6kV電網。為此,電機的Y/△改接應通過Y/△切換柜實現,以便實現旁路功能。而ACS1000系列本身的旁路切換是在電機電壓與電網電壓一致時完成的。若采用有源輸入前端,則可實現能量回饋及四象限運行,但三電平結構不易實現冗余設計。
5多電平高壓變頻器
隨著現代拓撲技術的發展,多電平高壓變頻調速技術得到了實際的應用。這種高壓變頻器的代表是法國阿爾斯通(ALSTOM)公司生產的ALSPAVDM6000系列高壓變頻器,其逆變器結構如圖8所示。
由圖8可見,功率器件不是簡單地串聯,而是結構上的串聯,通過電容鉗位,保證了電壓的安全分配。其主要特點是:
1)通過整體單元裝置的串并聯拓撲結構以滿足不同的電壓等級(如3.3kV、4.16kV、6.6kV、10kV)的需要。
2)這種結構可使系統普遍采用直流母線方案,以實現在多臺高壓變頻器之間能量互相交換。
3)這種結構沒有傳統結構中的各級功率器件上的眾多分壓分流裝置,消除了系統的可靠性低的因素,從而使系統結構非常簡單,可靠,易于維護。
4)輸出波形非常接近正弦波,可適用于普通感應電機和同步電機調速,而無需降低容量,沒有dv/dt對電機絕緣等的影響,電機沒有額外的溫升,是一種技術先進的高壓變頻器。輸出電壓和電機電流波形如圖9所示。
5)ALSPAVDM6000系列高壓變頻器可根據電網對諧波的不同要求采用12脈波,18脈波的二極管整流或晶閘管整流;若要將電能反饋回電網,可用晶閘管整流橋;若要求控制電網的諧波、功率因數,及實現四象限運行,可選擇有源前端。6多電平+多重化變頻器
日本富士公司采用高壓IGBT開發的中壓變頻器FRENIC4600FM4系列,它匯集了多電平和多重化變
中高壓變頻器主電路拓撲結構的分析比較
(b)電機電流
(a)輸出電壓

圖9ALSPAVDM6000輸出電壓電流波形
頻器的許多優點,它以多個中壓三電平PWM逆變器功率單元多重化串聯的方式實現直接高壓輸出,因此構成了一個雙完美無諧波系統:對電網為多重疊加整流,諧波符合IEEE519?1992的要求;對電動機為完美無諧波正弦波輸出,可以直接驅動任何品牌的交流鼠籠型電動機。
該型變頻器由于采用了高壓整流二極管和高壓IGBT,因此系統主電路使用的器件大為減少,可靠性提高,損耗降低,體積縮小。變頻器的綜合效率可達98%,功率因數高達0.95,不需要加設進相電容器或交直流電抗器,也不需要輸出濾波器,使系統結構大為簡化。圖10所示為FRENIC4600FM4的主電路及功率單元結構圖。
但是仔細分析,該型變頻器的性能價格優勢并不大,與其同時采用多電平和多重化兩種技術,還不如采用前面提到的高壓IGBT的多重化變頻器,反而顯得有些不倫不類。因為,用三電平技術構成單相逆變功率單元,在器件數量上并不占優勢,要比同樣電壓和功率等級的三電平三相逆變器足足多用一倍的器件,同樣比普通單相逆變功率單元也正好多出一倍的器件。例如:用3300V耐壓的IGBT器件,采用單元串聯多重化電路6kV系統每相需三個單元串聯,總共9個單元,共需54只整流二極管,36只IGBT;而采用三電平功率單元,每相需兩個單元串聯,總共6個單元,共需72只整流二極管,48只IGBT,足足多用了1/3的器件并且使功率單元的冗余成本增加了一倍,降低了多重化變頻器冗余性能好的優點,同時增加了裝置的成本。所以該型變頻器實際上并不可取。
評論