一種基于信息熵的WSN節點擁塞避免機制
摘要:無線傳感器網絡(WSN)中多對一通信產生的網絡擁塞是一個亟待解決的問題。針對WSN節點生命期有限的情況,引入了節點相對信息熵的概念,提出基于節點相對信息熵的擁塞避免機制:節點首先計算其聯合信息熵為上游節點分配數據窗;然后上游節點根據收到的數據窗的大小來決定向下游節點發送數據包的大小。仿真分析表明,該算法有效地避免了網絡數據包的丟失,減少了網絡傳輸延遲,且具有良好的能量有效性。
關鍵詞:無線傳感器網絡;節點相對信息熵;擁塞避免;數據窗
0 引言
與物理世界緊密耦合的無線傳感器網絡(WSN)具有大規模密集部署、節點資源受限、無線帶寬小、拓撲結構動態變化等特點。其節點采集到的數據以多跳的方式發送到基站。這種多對一的數據傳輸方式以及待檢測事件的突發性,使得能量、處理能力及通信能力都受限的WSN在數據傳輸過程中經常發生擁塞,從而導致數據包的大量丟失和網絡傳輸的延遲等問題。對于能源非常有限的節點,如何延長無線傳感器網絡的生命期是一個很重要的問題。在無線傳感器網絡中,無線通信是能源的主要消耗者,無線通信主要是數據包的轉發,減少數據包的轉發次數,合理分配節點發送數據包的大小,有效利用節點轉發的數據包不但可以減少無線傳感器網絡的能量消耗,而且還可以保證在突發情況下保證網絡的暢通,降低災害事件的發生。因此,節點擁塞避免是保證無線傳感器網絡正常傳輸的一個關鍵手段。
近年來,WSN中的擁塞問題日益引起了學術界的廣泛關注。研究人員逐步提出了多種針對WSN自身特點的控制策略(如CODA,ESRT,Fusion等)。這些控制算法采用了不同的機制有效地減輕擁塞,是一種被動的方式,可能導致節點數據的重發,且一般不能完全消除節點擁塞現象。
現有無線傳感器網絡的節點擁塞控制機制都是在節點發生擁塞時才采取一定的擁塞控制措施。但是,無線傳感器網絡節點大規模密集部署,在突發數據流引發擁塞后,再采用擁塞控制措施也不一定可以完全避免節點擁塞,很有可能導致災難性的后果發生。因此,在本文中,提出了基于節點相對信息熵的擁塞避免機制,該擁塞避免機制是基于事件的有效信息量,真正體現無線傳感器網絡以事件為中心的特點。
1 基于信息熵的節點擁塞避免策略
節點擁塞避免的重要問題是按一定的策略,為網絡資源均衡合理地分配數據窗的大小。在無線傳感器網絡中,由于節點大規模部署,若兩個節點位于各自的通信半徑內,它們可以直接通信。節點響應監測區域內的事件或周期性地產生數據并發送至基站。如圖1所示,對于相同的感知區域,把感知到的數據轉發到下游節點,其下游節點不斷把數據再轉發到自身的下游節點,這樣不斷地進行數據轉發,最后可能導致下游的某個節點產生擁塞。顯然,對于大規模部署和處理緊急事件的無線傳感器網絡來講,擁塞不僅嚴重浪費了節點能量還降低了轉發效率,而且還可能導致不可預料的事件發生。
1.1 WSN節點網絡模型
WSN由分布在各個地方的傳感器節點通過自組織方式所形成的網絡模型。在該模型中,傳感器節點采集數據,通過無線傳感器網絡傳遞到基站,然后再傳遞給檢測中心。在這里假設每一個傳感器節點都有直接或間接與基站通信的能力,則節點會響應監測區域內的事件或周期性地產生數據并發送到基站。
假設N個傳感器節點按相對均勻的隨機高密度部署在一個監測區域內,具有以下性質:
(1)N個傳感器節點被隨機部署在監測區域,基站不受能源限制,且位于一個區域的邊界上,其他傳感器節點為電池驅動;
(2)所有節點都為靜止節點,且各節點的軟硬件同構,通信頻率相同;
(3)每個節點采用全向天線,節點之間為雙向鏈路即A節點能和B節點通信,B節點也能和A節點通信,節點的通信范圍有限且通信半徑保持為R;
(4)WSN的信道質量可靠且傳輸的誤碼率基本可以忽略,其路由機制保持相對靜止,不會出現很大范圍的路由變化。
評論