超高頻段RFID標簽的數字電路設計
1 引 言
本文引用地址:http://www.104case.com/article/157970.htm射頻識別(RFID)技術作為一種新興的自動識別技術,近年來在國內外得到了迅速發展。目前,我國開發的RFID產品普遍基于中低頻,如二代身份證、票證管理等。在超高頻段我國自主開發的產品較少,難以適應巨大的市場需求以及激烈的國際競爭。超高頻(UHF)標簽是指工作頻率在860~960 MHz的RFID標簽,具有可讀寫距離長、閱讀速度快、作用范圍廣等優點,可廣泛應用于物流管理、倉儲、門禁等領域。為適應市場需求,本文以EPC C1G2協議為主,ISO/IEC18000.6為輔,設計了一種應用于超高頻標簽的數字電路。
2 UHF RFID標簽的工作原理
射頻識別系統通常由讀寫器(Reader)和射頻標簽(RFID Tag)構成。附著在待識別物體上的射頻標簽內存有約定格式的電子數據,作為待識別物品的標識性信息。讀寫器可無接觸地讀出標簽中所存的電子數據或者將信息寫入標簽,從而實現對各類物體的自動識別和管理。讀寫器與射頻標簽按照約定的通信協議采用先進的射頻技術互相通信,其基本通訊過程如下。
(1)讀寫器作用范圍內的標簽接收讀寫器發送的載波能量,上電復位;
(2)標簽接收讀寫器發送的命令并進行操作;
(3)讀寫器發出選擇和盤存命令對標簽進行識別,選定單個標簽進行通訊,其余標簽暫時處于休眠狀態;
(4)被識別的標簽執行讀寫器發送的訪問命令,并通過反向散射調制方式向讀寫器發送數據信息,進入睡眠狀態,此后不再對讀寫器應答;
(5)讀寫器對余下標簽繼續搜索,重復(3)、(4)分別喚醒單個標簽進行讀取,直至識別出所有標簽。
3 UHF RFID標簽的結構及系統規格
UHF RFID標簽的示意圖如圖1所示,由模擬和數字兩部分組成。模擬電路主要包括天線、喚醒電路、時鐘產生電路、包絡檢波電路、解調電路和反射調制電路;數字部分主要實現EPC通信協議,識別讀寫器發出的命令并執行,如實現多標簽閱讀時的防沖突方法、執行讀寫器發送的讀寫命令、實現讀寫器和標簽的通訊過程以及對輸出數據進行編碼等。協議規定的標簽系統規格如表1所示。
圖1 UHF RFID標簽的示意圖
表1 UHF RFID標簽系統規格
4 標簽數字電路的設計方法
4.1 電路的整體系統設計
經過對協議內容的深入研究,本文采用Top.down的設計方法,首先對電路功能進行詳細描述,按照功能對整個系統進行模塊劃分;再用VHDL硬件描述語言進行RTL代碼設計并進行功能仿真;功能驗證正確后,采用EDA工具,指定工藝庫,進行邏輯綜合優化;最后采用自動布局布線進行版圖設計形成芯片。本文確定的系統結構框圖如圖2所示,它包括譯碼模塊、CRC (循環冗余校驗,cyclic redundancy check)校驗模塊、狀態機模塊、CRC產生模塊、存儲器、編碼模塊和時鐘分頻模塊。譯碼模塊接收模擬部分解調出的命令信號,根據協議中規定的命令格式將信號譯碼成標簽數字部分可識別的二進制數據,并發送到CRC校驗模塊和狀態機模塊。CRC校驗模塊對收到的命令進行完整性校驗,若確認為有效命令,則觸發狀態機模塊,控制標簽執行相應操作,如讀寫存儲器、防沖突控制等。處理完成后則將要發送的數據送至CRC產生模塊產生相應的CRC校驗碼,然后將要發送的數據和校驗碼一起送至編碼模塊,最后由編碼模塊以特定的脈沖形式發送給模擬部分進行處理后再采用射頻技術發送給讀寫器。為降低功耗,時鐘分頻模塊將全局時鐘進行分頻,分頻后的頻率可由數字部分其他模塊使用。存儲器存儲標簽的標識性信息。下面將具體介紹各模塊的實現方法。
圖2 標簽數字部分系統結構框圖
評論