新聞中心

        EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 基于嵌入式ARMS3C2440智能建筑物裂紋實時測量系統(tǒng)開發(fā)研究

        基于嵌入式ARMS3C2440智能建筑物裂紋實時測量系統(tǒng)開發(fā)研究

        作者: 時間:2009-12-21 來源:網絡 收藏

        圖像分割的結果如圖3所示。觀察結果,很容易發(fā)現圖像的邊緣很大區(qū)域被錯分為與裂縫一樣。于是直接計算裂縫寬度時會導致將錯分的區(qū)域計算成裂縫。因此除了計算裂縫寬度外,對候選裂縫集合進行有效剔除是另一個重要任務。對選裂縫集合進行有效剔除將會在下一小節(jié)中進行討論。
        分割完圖像后,計算所有可能成為裂縫的區(qū)域的寬度。采用從圖像給定行的起始位置開始計算裂縫寬度,當發(fā)現像素灰度由0變?yōu)?55,記為一個裂縫的左邊緣起始位置;當查找到像素灰度由255變?yōu)?,記為一個裂縫的右邊緣結束位置。通過這種方法可以獲取給定行的所有可能的裂縫寬度。但是在具體試驗中發(fā)現,計算對單行的裂縫進行寬度還是存在比較大的誤差。于是采用求取給定行上下5行共10行的平均值的方法。這樣可以有效地去除毛刺的干擾。通過這種方法,得到一個裂縫的候選集合,并且計算出候選集合中每一個位置的寬度。
        1.3 Sobel邊緣檢測
        以上小節(jié)得出了裂縫的候選集合,但是事實上這個候選集合含有大量的非裂縫區(qū)域。這一節(jié)中的主要內容是設計算法剔除這些干擾裂縫,獲取更小的裂縫候選集合。在試驗中,由于裂縫具有明顯的邊緣,而干擾圖像區(qū)域有比較模糊的邊緣或者僅有一個邊緣等,通過分析,提出采用Sobel邊緣檢測的方法進行裂縫位置的鎖定。Sobel算子由兩個卷積核組成,如圖4所示,圖像中的每個點都用這兩個核做卷積,一個核對通常的垂直邊緣相應最大,而另一個對水平邊緣相應最大。兩個卷積的最大值作為該點的輸出位。運算結果是一幅邊緣幅度圖像。

        本文引用地址:http://www.104case.com/article/152205.htm

        通過對原始圖像采用Sobel邊緣檢測得到如圖5所示結果。

        但是,這個結果很明顯存在很多微小的干擾,這些干擾必須予以剔除,否則將對鎖定裂縫邊緣沒有任何效果。通過對邊緣檢測結果圖像仔細分析發(fā)現,雖然存在微小干擾,但是他們的灰度值普遍偏小,針對這一發(fā)現,對緣檢測結果圖像做與上一節(jié)中一樣的圖像分割,這會將微小的干擾有效地剔除。實際的實驗結果也驗證了這一點,如圖6所示。
        同過對分割后的邊緣圖像進行觀察,圖像仍然存在一些微小的干擾,但這些干擾相對于未處理的緣檢測結果圖像已經很少,將在后續(xù)的處理中對圖像裂縫添加附加約束,從而取出這些干擾的影響。
        1.4 基于裂縫特征的附加約束
        通過對大量的裂縫圖像進行分析,發(fā)現圖像裂縫有如下特點:
        (1)裂縫灰度值低于墻體的灰度值。
        (2)裂縫的寬度相對于整個圖像不超過圖像寬度的1/3。
        (3)污染的墻體區(qū)域一般呈大的塊狀出現,且很多僅含有一個邊界,另一邊界延伸至圖像外面。
        (4)墻體的一些微小的干擾呈小塊狀出現。
        (5)裂縫一般為帶狀。
        使用ARM處理器處理圖像,由于其速度慢且有性要求,故不能處理整張的圖像,換句話說,必須處理局部圖像。這就很明顯增加了剔除候選裂縫的難度。該顯然是無法使用特點(4)、特點(5)的。因此僅使用了前三個特點,并提出了約束:剔除寬度高于圖像寬度1/3的裂縫候選集,剔除寬度低于1/10的裂縫候選集。

        linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)


        評論


        相關推薦

        技術專區(qū)

        關閉
        主站蜘蛛池模板: 崇文区| 石首市| 富宁县| 宜都市| 江陵县| 阳高县| 平乐县| 景洪市| 双江| 昌黎县| 长阳| 赣榆县| 盘锦市| 观塘区| 甘德县| 海晏县| 柳州市| 来安县| 通许县| 乳源| 徐闻县| 阳谷县| 四子王旗| 宁海县| 三都| 沂水县| 嘉峪关市| 临沂市| 海原县| 鞍山市| 贵定县| 敖汉旗| 北流市| 西青区| 福清市| 湖南省| 美姑县| 洛川县| 顺义区| 英超| 新晃|